Abelian p-groups and the Halting problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian p-groups and the Halting problem

We investigate which effectively presented abelian p-groups are isomorphic relative to the halting problem. The standard approach to this and similar questions uses the notion of ∆2-categoricity (to be defined). We partially reduce the description of ∆ 0 2-categorical p-groups of Ulm type 1 to the analogous problem for equivalence structures. Using this reduction, we solve to a problem left ope...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

THE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS

A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.  

متن کامل

The sum-capture problem for abelian groups

Let G be a finite abelian group, let 0 < α < 1, and let A ⊆ G be a random set of size |G|. We let μ(A) = max B,C:|B|=|C|=|A| |{(a, b, c) ∈ A×B × C : a = b+ c}|. The issue is to determine upper bounds on μ(A) that hold with high probability over the random choice of A. Mennink and Preneel [4] conjecture that μ(A) should be close to |A| (up to possible logarithmic factors in |G|) for α ≤ 1/2 and ...

متن کامل

Growing forests in abelian p-groups

At the center of the theory of abelian p-groups are the classical theorems of Ulm, Zippin and Kaplansky, going back to the thirties, that classify countable p-groups by their Ulm invariants: the uniqueness theorem is referred to as Ulm's theorem, the existence theorem as Zippin's theorem. For each ordinal , the -th Ulm invariant of G can be de ned as the dimension fG( ) of the vector space (ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 2016

ISSN: 0168-0072

DOI: 10.1016/j.apal.2016.04.016